11 research outputs found

    Potential of Fermentable Sugar Production from Napier cv. Pakchong 1 Grass Residue as a Substrate to Produce Bioethanol

    Get PDF
    AbstractBioethanol is one of the most significant renewable fuels. The major sources of bioethanol production are food crops such as corn, sugarcane, rice, wheat and sugar beet. However, utilization of food crops to produce bioethanol could affect the food sources and disrupt the food to population ratio. To overcome these issues, the utilization of lignocellulosic materials such as wheat straw, grass and crop residues to produce bioethanol has been developed for second-generation fuel, since those resources are abundant, cheap and renewable. Napier Pakchong 1 grass (NPG) residue is a lignocellulosic waste obtained from the process of biogas production that can be used as an alternative material for bioethanol production. This research aims to study on the potential of fermentable sugar production from NPG residue. The materials were pretreated with different concentrations of sodium hydroxide (NaOH), followed by enzymatic hydrolysis for saccharification. The results suggested that pretreatment with 3.0% (w/v) NaOH solution at 121ĖŠC for 60 minutes provided the highest lignin removal of 86.1% (w/w) and enriched cellulose fraction from 36.4 to 75.6% (w/w). The enzymatic hydrolysis was conducted by varying enzyme loading volume and total solid contents (TS) at pH 4.8, 50ĖŠC for 72h. The hydrolysis with enzyme loading volume of 2.0 ml/g of substrate and 10% (w/v) of TS were optimal for saccharification giving the reducing sugar yield of 768 mg/g of pretreated biomass or equal to 64 g/L and glucose yield of 522 mg/g of pretreated biomass or equal to 43 g/L. The reducing sugar will be used as a starting material for yeast to produce bioethanol

    Optimization of hydrothermal conditioning conditions for Pennisetum purpureum x Pennisetum americanum (Napier PakChong1 grass) to produce the press fluid for biogas production

    Get PDF
    This study focused on the optimization of hydrothermal conditioning conditions for Napier PakChong1 grass to produce press fluid for biogas production. The integrated generation of solid fuel and biogas from biomass (IFBB) process was adopted to separate press fluid from the biomass. Napier PakChong1 grass was hydrothermally pretreated and then mechanically pressed. The press fluid was used for biochemical methane potential (BMP) test while the press cake could be utilized as the solid fuel. The full factorial design of experiment with center points and the Central Composite Design (CCD) were developed to obtain the best possible combination of harvesting time, grass to water ratio, temperature and soaking time for the maximum organic substance (as COD) in press fluid. It was found that the obtained model could satisfactorily predict the mass of COD in press fluid used as the model response. The optimum hydrothermal conditioning conditions were as follows; harvesting time 75 d, ratio of grass to water of 1:6 (by weight), ambient temperature (about 25°C) of the water and the soaking time of 355 min. The mass of COD obtained in these conditions was 226.42 g equating to 71.5% of the value predicted by the model (316.68 g). The microbial kinetic coefficients and biogas yield potential of press fluid at these optimum conditions were properly fitted with the modified Gompertz equation (adjusted R2= 0.995). The methane yield potential (P), the maximum methane production rate (Rm) and lag phase time (Îŧ) were 412.18 mlCH4/gVSadded, 51.47 mlCH4/gVSadded/d and 4.36 days, respectively

    āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļāđŠāļēāļ‹āđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒāļ‚āļ­āļ‡āļ–āđˆāļēāļ™āļŠāļĩāļ§āļ āļēāļžāļ—āļĩāđˆāļœāļĨāļīāļ•āļˆāļēāļāļŠāļĩāļ§āļĄāļ§āļĨāđ€āļŦāļĨāļ·āļ­āđƒāļŠāđ‰Hydrogen Sulfide Adsorption Capability of Biochar Produced from Residual Biomass

    No full text
    āļāļēāļĢāļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ—āļ”āļŠāļ­āļšāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļāđŠāļēāļ‹āđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒāļ”āđ‰āļ§āļĒāļ–āđˆāļēāļ™āļŠāļĩāļ§āļ āļēāļž āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļ–āđˆāļēāļ™āļ‹āļąāļ‡āļ‚āđ‰āļēāļ§āđ‚āļžāļ”āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™ (C), āļ–āđˆāļēāļ™āļ‹āļąāļ‡āļ‚āđ‰āļēāļ§āđ‚āļžāļ”āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™āļ āļēāļĒāđƒāļ•āđ‰āļšāļĢāļĢāļĒāļēāļāļēāļĻāļāđŠāļēāļ‹ CO2 (CA), āļ–āđˆāļēāļ™āļāļ°āļĨāļēāļĄāļ°āļžāļĢāđ‰āļēāļ§āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™ (CO), āļ–āđˆāļēāļ™āļāļ°āļĨāļēāļĄāļ°āļžāļĢāđ‰āļēāļ§āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™āļ āļēāļĒāđƒāļ•āđ‰āļšāļĢāļĢāļĒāļēāļāļēāļĻāļāđŠāļēāļ‹ CO2 (COA), āļ–āđˆāļēāļ™āļāļīāđˆāļ‡āđ„āļĄāđ‰āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™ (B) āđāļĨāļ°āļ–āđˆāļēāļ™āļāļīāđˆāļ‡āđ„āļĄāđ‰āļˆāļēāļāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™āļ āļēāļĒāđƒāļ•āđ‰āļšāļĢāļĢāļĒāļēāļāļēāļĻāļāđŠāļēāļ‹ CO2 (BA) āļŠāļĩāļ§āļĄāļ§āļĨāļœāđˆāļēāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™āļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 500 Âą 10 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ–āļđāļāļ™āļģāđ„āļ›āļ—āļ”āļŠāļ­āļšāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāđ‚āļ”āļĒāļ›āđ‰āļ­āļ™āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļ—āļĩāđˆāļœāļĨāļīāļ•āļˆāļēāļāļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ€āļ­āļ—āļēāļ™āļ­āļĨāļŠāļđāđˆāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ›āļāļīāļāļĢāļ“āđŒāļ­āļĒāđˆāļēāļ‡āļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļāđŠāļēāļ‹āđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒ 4,300 Âą 20 āļāļĢāļąāļĄāđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢ-āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļžāļšāļ§āđˆāļē āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļāđŠāļēāļ‹āđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒāļ‚āļ­āļ‡āļ–āđˆāļēāļ™ C, CO āđāļĨāļ° B āđ€āļ—āđˆāļēāļāļąāļš 2.33 Âą 0.09, 3.66 Âą 0.63 āđāļĨāļ° 5.56 Âą 0.77 āļ•āļēāļĄāļĨāļģāļ”āļąāļšāđāļĨāļ°āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļāđŠāļēāļ‹āđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒāļ‚āļ­āļ‡āļ–āđˆāļēāļ™ CA, COA āđāļĨāļ° BA āđ€āļ—āđˆāļēāļāļąāļš 1.58 Âą 0.90, 1.84 Âą 0.75, 1.26 Âą 0.20 āļāļĢāļąāļĄāđ„āļŪāđ‚āļ”āļĢāđ€āļˆāļ™āļ‹āļąāļĨāđ„āļŸāļ”āđŒāļ•āđˆāļ­āļāļĢāļąāļĄāļ§āļąāļŠāļ”āļļāļ”āļđāļ”āļ‹āļąāļš āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļˆāļ°āđ€āļŦāđ‡āļ™āđ„āļ”āđ‰āļ§āđˆāļēāļ–āđˆāļēāļ™ B āļĄāļĩāļ„āđˆāļēāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļŠāļđāļ‡āļāļ§āđˆāļēāļ–āđˆāļēāļ™ C āđāļĨāļ°āļ–āđˆāļēāļ™ CO āđāļĨāļ°āļžāļšāļ§āđˆāļē āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĢāđŒāļšāļ­āđ„āļ™āđ€āļ‹āļŠāļąāļ™āļ āļēāļĒāđƒāļ•āđ‰āļšāļĢāļĢāļĒāļēāļāļēāļĻāļāđŠāļēāļ‹ CO2 āđ„āļĄāđˆāļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ„āđˆāļēāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļ­āļĩāļāļ—āļąāđ‰āļ‡āļĒāļąāļ‡āļāđˆāļ­āđƒāļŦāđ‰āđ€āļāļīāļ”āļœāļĨāđ€āļŠāļĩāļĒāļ•āđˆāļ­āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ™āļĩāđ‰This study aimed to investigate the adsorption capacity of hydrogen sulfide (H2S) by biochar prepared from agricultural waste. The biochar samples include carbonized corn cob (C), carbonized corn cob under CO2 rich atmospheres (CA), carbonized coconut shell (CO), carbonized coconut shell under CO2 rich atmospheres (COA), carbonized woodchips (B) and carbonized woodchips under CO2 rich atmospheres (BA). All samples were carbonized at the controlled temperature (500 Âą 10 °C). H2S adsorption capability were evaluated in a continuous manner using actual biogas produced from ethanol waste with controlled H2S loading rates of 4,300 Âą 20 g/m3-h. The experimental measurement of the H2S adsorption capacity of C, CO, and B were 2.33 Âą 0.09, 3.66 Âą 0.63, and 5.56 Âą 0.77 g H2S/g Adsorbent material, respectively. The adsorption capacity of CA, COA, and BA were 1.58 Âą 0.90, 1.84 Âą 0.75, and 1.26 Âą 0.20 g H2S/g Adsorbent material. It is thus clear that carbonized woodchip (B) has significantly higher adsorption capacity than carbonized corn cob (C) and coconut shell (CO). Concisely, carbonization under CO2 rich atmosphere cannot enhance adsorption capacity; instead it induces negative effects in most cases

    āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļˆāļēāļāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļ­āļ—āļēāļ™āļ­āļĨāđ‚āļ”āļĒāļāļēāļĢāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™Efficiency Increasement of Biogas Production from Vinasse by Trace Element Addition

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļŠāļĩāļ§āļ āļēāļžāļˆāļēāļāļ™āđ‰āļģāđ€āļŠāļĩāļĒāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļ­āļ—āļēāļ™āļ­āļĨāđ‚āļ”āļĒāļāļēāļĢāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™ āđ„āļ”āđ‰āđāļāđˆ āđ€āļŦāļĨāđ‡āļ āļ™āļīāļāđ€āļāļīāļĨ āđāļĨāļ°āļŠāļąāļ‡āļāļ°āļŠāļĩ āļˆāļēāļāļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ°āļšāļšāļ‚āļ­āļ‡āļ–āļąāļ‡āļ›āļāļīāļāļĢāļ“āđŒāļŠāļ™āļīāļ”āļāļ§āļ™āļŠāļĄāļšāļđāļĢāļ“āđŒāļ‚āļ™āļēāļ” 10 āļĨāļīāļ•āļĢ āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ 0.50–7.42 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ‹āļĩāđ‚āļ­āļ”āļĩāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ§āļąāļ™āļžāļšāļ§āđˆāļē āļĢāļ°āļšāļšāļ—āļĩāđˆāđ„āļĄāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™ (R1) āļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™āđƒāļ™āļ—āļļāļāļ§āļąāļ™āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ°āļšāļš (R2) āļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™āđƒāļ™āļāļēāļĢāļŦāļĄāļąāļāļĒāđˆāļ­āļĒāļ„āļĢāļąāđ‰āļ‡āđāļĢāļāļ‚āļ­āļ‡āļ—āļļāļāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ āđ€āļĄāļ·āđˆāļ­āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ™āđ‰āļ­āļĒāļāļ§āđˆāļē 50% āļŦāļĢāļ·āļ­āđ€āļĄāļ·āđˆāļ­āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļĢāļīāļĄāļēāļ“āļāļĢāļ”āđ„āļ‚āļĄāļąāļ™āļĢāļ°āđ€āļŦāļĒāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡ (VFA/Alkalinity Ratio) āļĄāļēāļāļāļ§āđˆāļē 0.3 (R3) āđāļĨāļ°āļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™āđƒāļ™āļāļēāļĢāļŦāļĄāļąāļāļĒāđˆāļ­āļĒāļ„āļĢāļąāđ‰āļ‡āđāļĢāļāļ‚āļ­āļ‡āļ—āļļāļāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒ, āđ€āļĄāļ·āđˆāļ­āļĢāđ‰āļ­āļĒāļĨāļ°āļ‚āļ­āļ‡āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āļ™āđ‰āļ­āļĒāļāļ§āđˆāļē 50% āļŦāļĢāļ·āļ­āđ€āļĄāļ·āđˆāļ­āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļĢāļīāļĄāļēāļ“āļāļĢāļ”āđ„āļ‚āļĄāļąāļ™āļĢāļ°āđ€āļŦāļĒāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļ”āđˆāļēāļ‡ (VFA/Alkalinity Ratio) āļĄāļēāļāļāļ§āđˆāļē 0.5 (R4) āđ‚āļ”āļĒāļĄāļĩāļ­āļąāļ•āļĢāļēāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđ€āļ—āđˆāļēāļāļąāļš 198.90 Âą33.56, 165.90 Âą12.19, 229.40 Âą19.89 āđāļĨāļ° 195.44 Âą24.98 āļĄāļīāļĨāļĨāļīāļĨāļīāļ•āļĢāļ•āđˆāļ­āļāļĢāļąāļĄāļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĢāļ°āđ€āļŦāļĒāļ—āļĩāđˆāļ›āđ‰āļ­āļ™āđ€āļ‚āđ‰āļē āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ‹āļķāđˆāļ‡āļœāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē R3 āđƒāļŦāđ‰āļœāļĨāļ”āļĩāļ—āļĩāđˆāļŠāļļāļ” āđ‚āļ”āļĒāļĢāļ°āļšāļšāļŠāļēāļĄāļēāļĢāļ–āļĢāļ­āļ‡āļĢāļąāļšāļ­āļąāļ•āļĢāļēāļ āļēāļĢāļ°āļšāļĢāļĢāļ—āļļāļāļŠāļēāļĢāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒāđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ” 4.94 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ‹āļĩāđ‚āļ­āļ”āļĩāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ§āļąāļ™ āđāļĨāļ°āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļāđŠāļēāļ‹āļĄāļĩāđ€āļ—āļ™āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 15.33 āđ€āļĄāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļąāļšāļāļēāļĢāđ„āļĄāđˆāđ€āļ•āļīāļĄāđ‚āļĨāļŦāļ°āđ„āļ­āļ­āļ­āļ™The objective of this study is to investigate the effects of Trace Elements (TE) addition to increase efficiency of biogas production from vinasse. Multiple experiments were conducted to obtain the optimal feeding dosage of TE, which mainly consisted of iron, nickel and zinc. Experiments were performed in 10-litre lab-scale continuous stirred tank reactors at the organic load rates of 0.50–7.42 kgCOD/m3â€Ēd. The experiments included a control group and experimental groups as follows: The control case without TE addition (R1); the experimental groups with TE addition daily during system operation (R2); intervention with TE addition at the first fermentation stage in each organic load rate when the methane percentage was lower than 50% or when the volatile fatty acid/alkalinity ratio was more than 0.3 (R3); and the intervention with TE addition at the first fermentation stage in each organic load rate; when the methane percentage was lower than 50% or when the volatile fatty acid/alkalinity ratio was greater than 0.5 (R4). Observed specific methane production was198.90 Âą33.56, 165.90 Âą12.19, 229.40 Âą19.89 and 195.44 Âą24.98 ml/gVSadded. The results showed that R3 yielded the maximum organic loading rate of 4.94 kgCOD/m3â€Ēd, with 15.33% enhanced methane production efficiency as compared with the no-treatment control group

    Bioenergy development in Thailand based on the potential estimation from crop residues and livestock manures

    No full text
    Bioresource evaluation is prerequisite and important to reduce cost of feedstock collection and avoid battle for feedstock to promote the healthy development of bioenergy industry. This study estimated Thai bioresources from arable field crops, horticultural plants and livestock with product quantity or livestock number, residue product ratio or manure productivity, and moisture content. Rice straw and husk, para rubber residues and cattle manure separately have the top amount in arable field crop biomass, horticultural residues and livestock manures. The northeastern region has the most amounts of arable field crop biomass and livestock manures, and the southern region possesses the largest quantities of horticultural residues. The available energy potentials from residues of arable field crops and horticultural plants can reach to maximum of 4.91 x 10(5) TJ and 7.65 x 10(5) TJ, respectively, which can theoretically share 21.67% of current total primary energy supply. The available biogas potential from livestock manures is nearly ten times than its current generation. After analysis the status of technologies and government policies for Thai bioenergy industry, it indicates that the utilization of bioenergy in the form of electricity, heat and transportation fuels has promising prospect in Thailand. The provinces of Thailand which are more suitable for developing bioenergy industry are suggested. This work may guide the reasonable layout of bioenergy industry in Thailand via the presence of bioresouces distribution in every province
    corecore